Skip to main content
Top

2021 | OriginalPaper | Chapter

GKD: Semi-supervised Graph Knowledge Distillation for Graph-Independent Inference

Authors : Mahsa Ghorbani, Mojtaba Bahrami, Anees Kazi, Mahdieh Soleymani Baghshah, Hamid R. Rabiee, Nassir Navab

Published in: Medical Image Computing and Computer Assisted Intervention – MICCAI 2021

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The increased amount of multi-modal medical data has opened the opportunities to simultaneously process various modalities such as imaging and non-imaging data to gain a comprehensive insight into the disease prediction domain. Recent studies using Graph Convolutional Networks (GCNs) provide novel semi-supervised approaches for integrating heterogeneous modalities while investigating the patients’ associations for disease prediction. However, when the meta-data used for graph construction is not available at inference time (e.g., coming from a distinct population), the conventional methods exhibit poor performance. To address this issue, we propose a novel semi-supervised approach named GKD based on the knowledge distillation. We train a teacher component that employs the label-propagation algorithm besides a deep neural network to benefit from the graph and non-graph modalities only in the training phase. The teacher component embeds all the available information into the soft pseudo-labels. The soft pseudo-labels are then used to train a deep student network for disease prediction of unseen test data for which the graph modality is unavailable. We perform our experiments on two public datasets for diagnosing Autism spectrum disorder, and Alzheimer’s disease, along with a thorough analysis on synthetic multi-modal datasets. According to these experiments, GKD outperforms the previous graph-based deep learning methods in terms of accuracy, AUC, and Macro F1.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Abraham, A., Milham, M.P., Di Martino, A., Craddock, R.C., Samaras, D., Thirion, B., Varoquaux, G.: Deriving reproducible biomarkers from multi-site resting-state data: An autism-based example. Neuroimage 147, 736–745 (2017)CrossRef Abraham, A., Milham, M.P., Di Martino, A., Craddock, R.C., Samaras, D., Thirion, B., Varoquaux, G.: Deriving reproducible biomarkers from multi-site resting-state data: An autism-based example. Neuroimage 147, 736–745 (2017)CrossRef
2.
go back to reference Abrol, A., Fu, Z., Du, Y., Calhoun, V.D.: Multimodal data fusion of deep learning and dynamic functional connectivity features to predict alzheimer’s disease progression. In: 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 4409–4413. IEEE (2019) Abrol, A., Fu, Z., Du, Y., Calhoun, V.D.: Multimodal data fusion of deep learning and dynamic functional connectivity features to predict alzheimer’s disease progression. In: 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 4409–4413. IEEE (2019)
3.
go back to reference Bi, X.a., Cai, R., Wang, Y., Liu, Y.: Effective diagnosis of alzheimer’s disease via multimodal fusion analysis framework. Frontiers Genetics 10, 976 (2019) Bi, X.a., Cai, R., Wang, Y., Liu, Y.: Effective diagnosis of alzheimer’s disease via multimodal fusion analysis framework. Frontiers Genetics 10, 976 (2019)
4.
go back to reference Buciluǎ, C., Caruana, R., Niculescu-Mizil, A.: Model compression. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 535–541 (2006) Buciluǎ, C., Caruana, R., Niculescu-Mizil, A.: Model compression. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 535–541 (2006)
5.
go back to reference Cai, Q., Wang, H., Li, Z., Liu, X.: A survey on multimodal data-driven smart healthcare systems: approaches and applications. IEEE Access 7, 133583–133599 (2019)CrossRef Cai, Q., Wang, H., Li, Z., Liu, X.: A survey on multimodal data-driven smart healthcare systems: approaches and applications. IEEE Access 7, 133583–133599 (2019)CrossRef
6.
go back to reference Craddock, C., et al.: The neuro bureau preprocessing initiative: open sharing of preprocessed neuroimaging data and derivatives. Frontiers in Neuroinformatics 7 (2013) Craddock, C., et al.: The neuro bureau preprocessing initiative: open sharing of preprocessed neuroimaging data and derivatives. Frontiers in Neuroinformatics 7 (2013)
7.
go back to reference Defferrard, M., Bresson, X., Vandergheynst, P.: Convolutional neural networks on graphs with fast localized spectral filtering. arXiv preprint arXiv:1606.09375 (2016) Defferrard, M., Bresson, X., Vandergheynst, P.: Convolutional neural networks on graphs with fast localized spectral filtering. arXiv preprint arXiv:​1606.​09375 (2016)
8.
go back to reference Di Martino, A., Yan, C.G., Li, Q., Denio, E., Castellanos, F.X., Alaerts, K., Anderson, J.S., Assaf, M., Bookheimer, S.Y., Dapretto, M., et al.: The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism. Mol. Psychiatry 19(6), 659–667 (2014)CrossRef Di Martino, A., Yan, C.G., Li, Q., Denio, E., Castellanos, F.X., Alaerts, K., Anderson, J.S., Assaf, M., Bookheimer, S.Y., Dapretto, M., et al.: The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism. Mol. Psychiatry 19(6), 659–667 (2014)CrossRef
9.
go back to reference Du, H., Feng, J., Feng, M.: Zoom in to where it matters: a hierarchical graph based model for mammogram analysis. arXiv preprint arXiv:1912.07517 (2019) Du, H., Feng, J., Feng, M.: Zoom in to where it matters: a hierarchical graph based model for mammogram analysis. arXiv preprint arXiv:​1912.​07517 (2019)
10.
go back to reference Ghorbani, M., Kazi, A., Baghshah, M.S., Rabiee, H.R., Navab, N.: Ra-gcn: Graph convolutional network for disease prediction problems with imbalanced data. arXiv preprint arXiv:2103.00221 (2021) Ghorbani, M., Kazi, A., Baghshah, M.S., Rabiee, H.R., Navab, N.: Ra-gcn: Graph convolutional network for disease prediction problems with imbalanced data. arXiv preprint arXiv:​2103.​00221 (2021)
11.
go back to reference Guo, Z., Li, X., Huang, H., Guo, N., Li, Q.: Deep learning-based image segmentation on multimodal medical imaging. IEEE Trans. Radiation Plasma Med. Sci. 3(2), 162–169 (2019)CrossRef Guo, Z., Li, X., Huang, H., Guo, N., Li, Q.: Deep learning-based image segmentation on multimodal medical imaging. IEEE Trans. Radiation Plasma Med. Sci. 3(2), 162–169 (2019)CrossRef
12.
go back to reference Guyon, I.: Design of experiments of the nips 2003 variable selection benchmark. In: NIPS 2003Workshop on Feature Extraction and Feature Selection, vol. 253 (2003) Guyon, I.: Design of experiments of the nips 2003 variable selection benchmark. In: NIPS 2003Workshop on Feature Extraction and Feature Selection, vol. 253 (2003)
14.
go back to reference Huang, S.C., Pareek, A., Seyyedi, S., Banerjee, I., Lungren, M.P.: Fusion of medical imaging and electronic health records using deep learning: a systematic review and implementation guidelines. NPJ digital Med. 3(1), 1–9 (2020)CrossRef Huang, S.C., Pareek, A., Seyyedi, S., Banerjee, I., Lungren, M.P.: Fusion of medical imaging and electronic health records using deep learning: a systematic review and implementation guidelines. NPJ digital Med. 3(1), 1–9 (2020)CrossRef
15.
go back to reference Huang, Y., Chung, A.C.S.: Edge-variational graph convolutional networks for uncertainty-aware disease prediction. In: Martel, A.L., Abolmaesumi, P., Stoyanov, D., Mateus, D., Zuluaga, M.A., Zhou, S.K., Racoceanu, D., Joskowicz, L. (eds.) MICCAI 2020. LNCS, vol. 12267, pp. 562–572. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59728-3_55CrossRef Huang, Y., Chung, A.C.S.: Edge-variational graph convolutional networks for uncertainty-aware disease prediction. In: Martel, A.L., Abolmaesumi, P., Stoyanov, D., Mateus, D., Zuluaga, M.A., Zhou, S.K., Racoceanu, D., Joskowicz, L. (eds.) MICCAI 2020. LNCS, vol. 12267, pp. 562–572. Springer, Cham (2020). https://​doi.​org/​10.​1007/​978-3-030-59728-3_​55CrossRef
16.
go back to reference Kazi, A., Shekarforoush, S., Arvind Krishna, S., Burwinkel, H., Vivar, G., Kortüm, K., Ahmadi, S.-A., Albarqouni, S., Navab, N.: InceptionGCN: receptive field aware graph convolutional network for disease prediction. In: Chung, A.C.S., Gee, J.C., Yushkevich, P.A., Bao, S. (eds.) IPMI 2019. LNCS, vol. 11492, pp. 73–85. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20351-1_6CrossRef Kazi, A., Shekarforoush, S., Arvind Krishna, S., Burwinkel, H., Vivar, G., Kortüm, K., Ahmadi, S.-A., Albarqouni, S., Navab, N.: InceptionGCN: receptive field aware graph convolutional network for disease prediction. In: Chung, A.C.S., Gee, J.C., Yushkevich, P.A., Bao, S. (eds.) IPMI 2019. LNCS, vol. 11492, pp. 73–85. Springer, Cham (2019). https://​doi.​org/​10.​1007/​978-3-030-20351-1_​6CrossRef
18.
19.
go back to reference Lee, G., Nho, K., Kang, B., Sohn, K.A., Kim, D.: Predicting alzheimer’s disease progression using multi-modal deep learning approach. Sci. Rep. 9(1), 1–12 (2019) Lee, G., Nho, K., Kang, B., Sohn, K.A., Kim, D.: Predicting alzheimer’s disease progression using multi-modal deep learning approach. Sci. Rep. 9(1), 1–12 (2019)
20.
go back to reference Li, X., Duncan, J.: Braingnn: Interpretable brain graph neural network for fmri analysis. bioRxiv (2020) Li, X., Duncan, J.: Braingnn: Interpretable brain graph neural network for fmri analysis. bioRxiv (2020)
21.
go back to reference Liu, J., Tan, G., Lan, W., Wang, J.: Identification of early mild cognitive impairment using multi-modal data and graph convolutional networks. BMC Bioinformatics 21(6), 1–12 (2020) Liu, J., Tan, G., Lan, W., Wang, J.: Identification of early mild cognitive impairment using multi-modal data and graph convolutional networks. BMC Bioinformatics 21(6), 1–12 (2020)
22.
go back to reference Marinescu, R.V., et al.: Tadpole challenge: Prediction of longitudinal evolution in alzheimer’s disease. arXiv preprint arXiv:1805.03909 (2018) Marinescu, R.V., et al.: Tadpole challenge: Prediction of longitudinal evolution in alzheimer’s disease. arXiv preprint arXiv:​1805.​03909 (2018)
23.
go back to reference Parisot, S., et al.: Disease prediction using graph convolutional networks: application to autism spectrum disorder and alzheimer’s disease. Med. Image Anal. 48, 117–130 (2018)CrossRef Parisot, S., et al.: Disease prediction using graph convolutional networks: application to autism spectrum disorder and alzheimer’s disease. Med. Image Anal. 48, 117–130 (2018)CrossRef
24.
go back to reference Parisot, S., Ktena, S.I., Ferrante, E., Lee, M., Moreno, R.G., Glocker, B., Rueckert, D.: Spectral Graph Convolutions for Population-Based Disease Prediction. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 177–185. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66179-7_21CrossRef Parisot, S., Ktena, S.I., Ferrante, E., Lee, M., Moreno, R.G., Glocker, B., Rueckert, D.: Spectral Graph Convolutions for Population-Based Disease Prediction. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 177–185. Springer, Cham (2017). https://​doi.​org/​10.​1007/​978-3-319-66179-7_​21CrossRef
25.
go back to reference Pedregosa, F., et al.: Scikit-learn: Machine learning in python. J. Mach. Learn. Res.12, 2825–2830 (2011) Pedregosa, F., et al.: Scikit-learn: Machine learning in python. J. Mach. Learn. Res.12, 2825–2830 (2011)
26.
go back to reference Venugopalan, J., Tong, L., Hassanzadeh, H.R., Wang, M.D.: Multimodal deep learning models for early detection of alzheimer’s disease stage. Sci. Rep. 11(1), 1–13 (2021)CrossRef Venugopalan, J., Tong, L., Hassanzadeh, H.R., Wang, M.D.: Multimodal deep learning models for early detection of alzheimer’s disease stage. Sci. Rep. 11(1), 1–13 (2021)CrossRef
29.
go back to reference Zhang, S., Tong, H., Xu, J., Maciejewski, R.: Graph convolutional networks: a comprehensive review. Comput. Soc. Networks 6(1), 1–23 (2019)CrossRef Zhang, S., Tong, H., Xu, J., Maciejewski, R.: Graph convolutional networks: a comprehensive review. Comput. Soc. Networks 6(1), 1–23 (2019)CrossRef
30.
go back to reference Zhu, X., Ghahramani, Z.: Learning from labeled and unlabeled data with label propagation (2002) Zhu, X., Ghahramani, Z.: Learning from labeled and unlabeled data with label propagation (2002)
Metadata
Title
GKD: Semi-supervised Graph Knowledge Distillation for Graph-Independent Inference
Authors
Mahsa Ghorbani
Mojtaba Bahrami
Anees Kazi
Mahdieh Soleymani Baghshah
Hamid R. Rabiee
Nassir Navab
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-030-87240-3_68

Premium Partner